Similarity Search

CSE545 - Spring 2020 Stony Brook University

H. Andrew Schwartz

ANB

Big Data Analytics, The Class

Goal: Generalizations
A *model* or *summarization* of the data.

Data Frameworks

Hadoop File System Spark

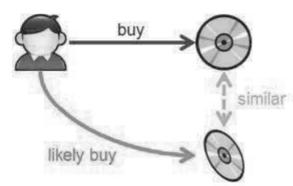
Streaming

MapReduc

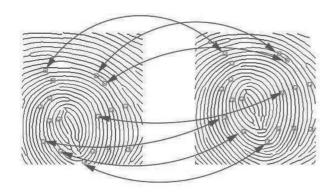
Tensorflow

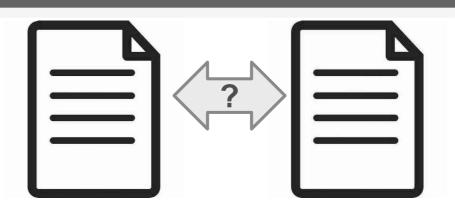
Algorithms and Analyses

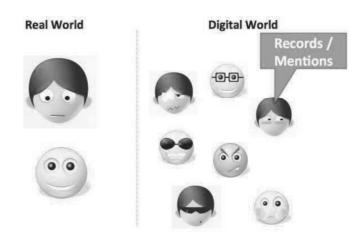
Similarity Search


Hypothesis Testing

Link Analysis

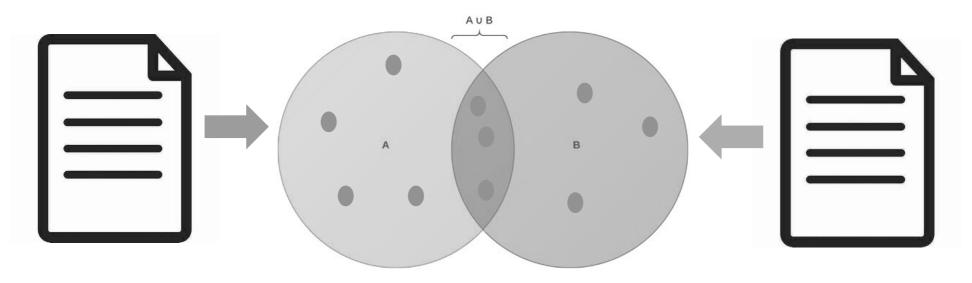

Recommendation Systems


Deep Learning

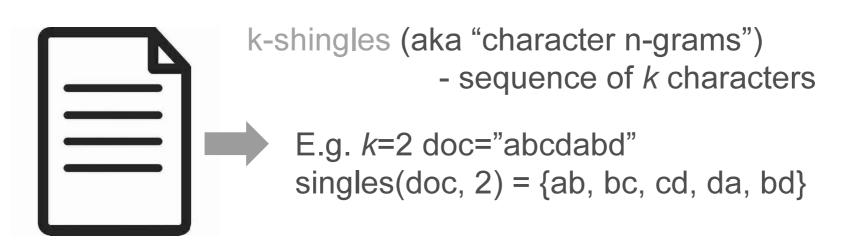

Finding Similar Items

(http://blog.soton.ac.uk/hive/2012/05/10/r ecommendation-system-of-hive/)

(http://www.datacommunitydc.org/blog/20 13/08/entity-resolution-for-big-data)


Finding Similar Items: Topics

- Shingling
- Minhashing
- Locality-sensitive hashing
- Distance Metrics


Document Similarity

Challenge: How to represent the document in a way that can be efficiently encoded and compared?

Goal: Convert documents to sets

Goal: Convert documents to sets

Goal: Convert documents to sets

k-shingles (aka "character n-grams")
- sequence of *k* characters

- E.g. k=2 doc="abcdabd"singles(doc, 2) = {ab, bc, cd, da, bd}
- Similar documents have many common shingles
- Changing words or order has minimal effect.
- In practice use 5 < k < 10

Goal: Convert documents to sets


```
Large enough that any given shingle appearing a document is highly unlikely (e.g. < .1% chance)

Can hash large shingles to smaller (e.g. 9-shingles into 4 bytes)
```

- Similar documents have many common shingles
- Changing with or order has minimal effect.
- In practice use 5 < k < 10

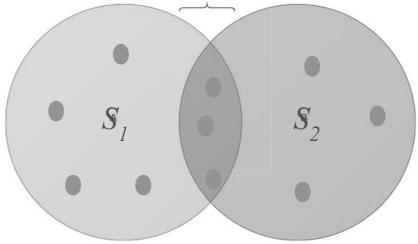
Can also use words (aka n-grams).

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

Goal: Convert sets to shorter ids, signatures

Goal: Convert sets to shorter ids, "signatures"

Characteristic Matrix, X:


Element	S_1	S_2	S_3	S_4
а	1	0	0	1
b	0	0	1	0
C	0	1	0	1
d	1	0	1	1
e	0	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

often very sparse! (lots of zeros)

Jaccard Similarity:

$$sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$$

Characteristic Matrix:

	S_1	S_2
ab	1	1
bc	0	1
de	1	0
ah	1	1
ha	0	0
ed	1	1
ca	0	1

Jaccard Similarity:

$$sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$$

Characteristic Matrix:

	S_1	S_2	
ab	1	1	* *
bc	0	1	*
de	1	0	*
ah	1	1	**
ha	0	0	
ed	1	1	**
ca	0	1	*

Jaccard Similarity:

$$sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$$

Characteristic Matrix:

	S_1	S_2	
ab	1	1	* *
bc	0	1	*
de	1	0	*
ah	1	1	**
ha	0	0	
ed	1	1	**
ca	0	1	*

Jaccard Similarity:

$$sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$$

 $sim(S_1, S_2) = 3 / 6$ # both have / # at least one has

Problem: Even if hashing shingle contents,
sets of shingles are large
e.g. 4 byte integer per shingle: assume all unique shingles,
=> 4x the size of the document
(since there are as many shingles as characters and 1byte per char).

Goal: Convert sets to shorter ids, "signatures"

Characteristic Matrix: X

	S_1	S_2	S_3	S_4
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Goal: Convert sets to shorter ids, "signatures"

Characteristic Matrix: X

	S_{1}	S_2	S_3	S_4
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Approximate Approach:

- 1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
- 2) Shuffle and repeat to get a "signature" for each set.

Goal: Convert sets to shorter ids, "signatures"

Characteristic Matrix: X

	S_1	S_2	S_3	S_4
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Approximate Approach:

- 1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
- 2) Shuffle and repeat to get a "signature" for each set.

Goal: Convert sets to shorter ids, "signatures"

Characteristic Matrix: X

	\ ' <i>)</i>		\ ' <i>)</i>	(-)
	S_1	S_2	S_3	S_4
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Approximate Approach:

- 1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
- 2) Shuffle and repeat to get a "signature".

	2	1	2	1
	S_1	S_2	S_3	S_4
ah	0	1	0	1
ca	1	0	1	0
ed	1	0	1	0
de	0	1	0	1
ab	1	0	1	0
bc	1	0	0	1

Goal: Convert sets to shorter ids, "signatures"

Characteristic Matrix: X

	\ ' /		\ ' /	(~)
	S_1	S_2	S_3	S_4
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Approximate Approach:

- 1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
- 2) Shuffle and repeat to get a "signature".

	2	1	2	1
	S_1	S_2	S_3	S_4
ah	0	1	0	1
ca	1	0	1	0
ed	1	0	1	0
de	0	1	0	1
ab	1	0	1	0
bc	1	0	0	1

signatures

S_1	S_2	S_3	S_4
1	3	1	2
2	1	2	1

Goal: Convert sets to shorter ids, "signatures"

Characteristic Matrix: X

	S_1	S_2	S_3	S_4
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Approximate Approach:

- 1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
- 2) Shuffle and repeat to get a "signature" for each set.

Idea: We don't need to actually shuffle. We can just permute row ids.

Characteristic Matrix:

	S_{1}	S_2	S_3	S_4
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to first row where set appears.

Characteristic Matrix:

	S_1	S_2	S_3	S_4
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to first row where set appears.

permuted order
1 ha
2 ed
3 ab
4 bc
5 ca
6 ah
7 de

Characteristic Matrix:

		S_{1}	S_2	S_3	S_4
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to first row where set appears.

permuted order
1 ha
2 ed
3 ab
4 bc
5 ca
6 ah
7 de

Characteristic Matrix:

		S_1	S_2	S_3	S_4
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to first row where set appears.

$$h(S_1) = \text{ed } \# \text{permuted row 2}$$

 $h(S_2) = \text{ha } \# \text{permuted row 1}$
 $h(S_3) =$

Characteristic Matrix:

		S_1	S_2	S_3	S_4
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to first row where set appears.

$$h(S_1) = \text{ed}$$
 #permuted row 2
 $h(S_2) = \text{ha}$ #permuted row 1
 $h(S_3) = \text{ed}$ #permuted row 2
 $h(S_4) =$

Characteristic Matrix:

		S_1	S_2	S_3	S_4
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

Minhash function: h

• Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

permuted order
1 ha
2 ed
3 ab
4 bc
5 ca
6 ah
7 de

$$h(S_1) = \text{ed}$$
 #permuted row 2
 $h(S_2) = \text{ha}$ #permuted row 1
 $h(S_3) = \text{ed}$ #permuted row 2
 $h(S_4) = \text{ha}$ #permuted row 1

Characteristic Matrix:

		S_{1}	S_2	S_3	S_4
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

$$h_1(S_1) = \text{ed}$$
 #permuted row 2
 $h_1(S_2) = \text{ha}$ #permuted row 1
 $h_1(S_3) = \text{ed}$ #permuted row 2
 $h_1(S_4) = \text{ha}$ #permuted row 1

Characteristic Matrix:

		S_1	S_2	S_3	S_4
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

$$h_1(S_1) = ed #permuted row$$

$$h_1(S_2)$$
 = ha #permuted row

$$h(S) = ed \# nermuted row$$

Characteristic Matrix:

		S_1	S_2	S_3	S_4
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

$$h(S) = ed \#nermuted row$$

Characteristic Matrix:

			S_1	S_2	S_3	S_4
4	3	ab	1	0	1	0
2	4	bc	1	0	0	1
1	7	de	0	1	0	1
3	6	ah	0	1	0	1
6	1	ha	0	1	0	1
7	2	ed	1	0	1	0
5	5	ca	1	0	1	0

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

 Record first row where each set had a 1 in the given permutation

	S_1	S_2	S_3	S_4
h_1	2	1	2	1
h_2				

Characteristic Matrix:

			S_{1}	S_2	S_3	S_4
4	3	ab	1	0	1	0
2	4	bc	1	0	0	1
1	7	de	0	1	0	1
3	6	ah	0	1	0	1
6	1	ha	0	1	0	1
7	2	ed	1	0	1	0
5	5	ca	1	0	1	0

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

 Record first row where each set had a 1 in the given permutation

	S_{1}	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1

Characteristic Matrix:

				S_{1}	S_2	S_3	S_4
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

	S_{1}	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1
h_3				

Characteristic Matrix:

				S_{1}	S_2	S_3	S_4
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

	S_{1}	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1
h_3	1	2	1	2

Characteristic Matrix:

				S_{1}	S_2	S_3	S_4
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

 Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

	S_{1}	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1
h_3	1	2	1	2

Characteristic Matrix:

				S_1	S_2	S_3	S_4
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	1	0	1	0

Property of signature matrix:

The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

د حدایا

	S_1	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1
h_3	1	2	1	2

Characteristic Matrix:

				S_{1}	S_2	S_3	S_4
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	1	0	1	0

Property of signature matrix:

The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

و حداثا

	S_1	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1
h_3	1	2	1	2

Property of signature matrix:

The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Characteristic Matrix:

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

				1		P	4	
1	4	3	ab	1	0		0	
3	2	- 4:		! 1	ء ما	10.010	مور مام	a a manula a f
7		:Stir						sample of ~100)
6	3	6	an					
2	6	1	ha	0	1	0	1	
5	7	2	ed	1	0	1	0	
4	5	5	ca	1	0	1	0	

f		S_{1}	S_2	S_3	S_4
	h_1	2	1	2	1
	h_2	2	1	4	1
	h_3	1	2	1	2

Property of signature matrix:

The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Characteristic Matrix:

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

1	4	3	ab	1_	0		0	
3	² /E	Estir						sample o
6	3	6	an					
2	6	1	ha	0	1	0	1	
5	7	2	ed	1	0	1	0	

S_{1}	S_2	S_3	S_4
2	1	2	1
2	1	4	1
1	2	1	2
	2	2 1 2 1	2 1 2 2 1 4

Estimated $Sim(S_1, S_3) =$ agree / all = 2/3

(Leskovec at al., 2014; http://www.mmds.org/)

0

5

Characteristic Matrix:

				S_1	S_2	S_3	S_4
1	4	3	ab	1_	0	1_	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1_	0	1	0
4	5	5	ca	1_	0	1	0

Property of signature matrix:

The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

T	Г	
		\sim

	S_1	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1
h_3	1	2	1	2

Estimated
$$Sim(S_1, S_3) =$$
 agree / all = 2/3

Real Sim(
$$S_1$$
, S_3) =
Type a / (a + b + c) = 3/4

Characteristic Matrix:

				S_{1}	S_2	S_3	S_4
1	4	3	ab	1_	0	1_	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1_	0	1	0
4	5	5	ca	1_	0	1	0

Property of signature matrix:

The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

T	T	
		\sim

	S_1	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1
h_3	1	2	1	2

Estimated
$$Sim(S_1, S_3) =$$
 agree / all = 2/3

Real Sim(
$$S_1$$
, S_3) =
Type a / (a + b + c) = 3/4

Try
$$Sim(S_2, S_4)$$
 and $Sim(S_1, S_2)$

Error Bound?

Characteristic Matrix:

				S_1	S_2	S_3	S_4
1	4	3	ab	1_	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1_	0	1	0
4	5	5	ca	1_	0	1	0

	S_1	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1
h_3	1	2	1	2

Estimated $Sim(S_1, S_3) =$ agree / all = 2/3

Real Sim(S_1 , S_3) = Type a / (a + b + c) = 3/4

Try $Sim(S_2, S_4)$ and $Sim(S_1, S_2)$

Characteristic Matrix:

				S_{1}	S_2	S_3	S_4
1	4	3	ab	1_	0	1_	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1_	0	1	0
4	5	5	ca	1_	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Error Bound?

Expect error: $O(1/\sqrt{k})$ (k hashes)

Why? Each row is a random observation of 1 or 0 (match or not) with P(match=1) = Sim(S1, S2).

	S_1	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1
h_3	1	2	1	2

Estimated
$$Sim(S_1, S_3) =$$
 agree / all = 2/3

Real Sim(
$$S_1$$
, S_3) =
Type a / (a + b + c) = 3/4

Try
$$Sim(S_2, S_4)$$
 and $Sim(S_1, S_2)$

Characteristic Matrix:

				S_1	S_2	S_3	S_4
1	4	3	ab	1_	0	1_	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1_	0	1	0
4	5	5	ca	1_	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Error Bound?

Expect error: $O(1/\sqrt{k})$ (k hashes)

Why? Each row is a random observation of 1 or 0 (match or not) with P(match=1) = Sim(S1, S2).

N = k observations

Standard deviation(std)? < 1 (worst case is 0.5)

	S_1	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1
h_3	1	2	1	2

Estimated
$$Sim(S_1, S_3) =$$
 agree / all = 2/3

Real Sim(
$$S_1$$
, S_3) =
Type a / (a + b + c) = 3/4

Try
$$Sim(S_2, S_4)$$
 and $Sim(S_1, S_2)$

Characteristic Matrix:

				S_1	S_2	S_3	S_4
1	4	3	ab	1_	0	1_	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1_	0	1	0
4	5	5	ca	1_	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Error Bound?

Expect error: $O(1/\sqrt{k})$ (k hashes)

Why? Each row is a random observation of 1 or 0 (match or not) with P(match=1) = Sim(S1, S2).

N = k observations

Standard deviation(std)? < 1 (worst case is 0.5) Standard Error of Mean = std/\sqrt{N}

	S_1	S_2	S_3	S_4
h_1	2	1	2	1
h_2	2	1	4	1
h_3	1	2	1	2

Estimated
$$Sim(S_1, S_3) =$$
 agree / all = 2/3

Real Sim(
$$S_1$$
, S_3) =
Type a / (a + b + c) = 3/4

Try
$$Sim(S_2, S_4)$$
 and $Sim(S_1, S_2)$

In Practice

Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)

In Practice

Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)

Solution: Use "random" hash functions.

- Setup:
 - Pick ~100 hash functions, hashes
 - Store M[i][s] = a potential minimum $h_i(r)$ #initialized to infinity (num hashs x num sets)

Solution: Use "random" hash functions.

Setup:

hashes = [getHfunc(i) for i in rand(1, num=100)]

#100 hash functions, seeded random

for i in hashes: for s in sets:

 $Sig[i][s] = np.inf #represents a potential minimum <math>h_i(r)$; initially infinity

```
Solution: Use "random" hash functions.
Setup:
 hashes = [getHfunc(i) for i in rand(1, num=100)]
                             #100 hash functions, seeded random
 for i in hashes: for s in sets:
   Sig[i][s] = np.inf #represents a potential minimum <math>h_i(r); initially infinity
Algorithm ("efficient minhashing"):
 for r in rows of cm: #cm is characteristic matrix
  compute h_i(r) for all i in hashes #precompute 100 values
  for each set s in sets: #columns of cm
    if cm[r][s] == 1:
       for i in hashes: #check which hash produces smallest value
         if h_i(r) < \text{Sig[i][s]}: \text{Sig[i][s]} = h_i(r)
```

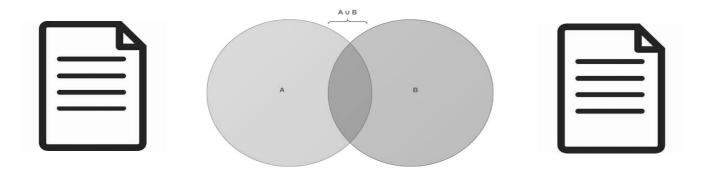
```
Solution: Use "random" hash functions.
Setup:
 hashes = [getHfunc(i) for i in rand(1, num=100)]
                            #100 hash functions, seeded random
 for i in hashes: for s in sets:
   Sig[i][s] = np.inf #represents a potential minimum <math>h_i(r); initially infinity
Algorithm ("efficient minhashing") without charact matrix:
 for feat in shins: #shins is all unique shingles
  compute h_i(feat) for all i in hashes #precompute 100 values
  for each set s in sets: #sets is list of shingle sets
    if feat in s:
      for i in hashes: #check which hash produces smallest value
        if h_i(feat) < Sig[i][s_{id}]: Sig[i][s_{id}] = h_i(feat)
```

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

New Problem: Even if the size of signatures are small, it can be computationally expensive to find similar pairs.

E.g. 1m documents; 1,000,000 choose 2 = 500,000,000,000 pairs!


Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

New Problem: Even if the size of signatures are small, it can be computationally expensive to find similar pairs.

E.g. 1m documents; 1,000,000 choose 2 = 500,000,000,000 pairs!

(1m documents isn't even "big data")

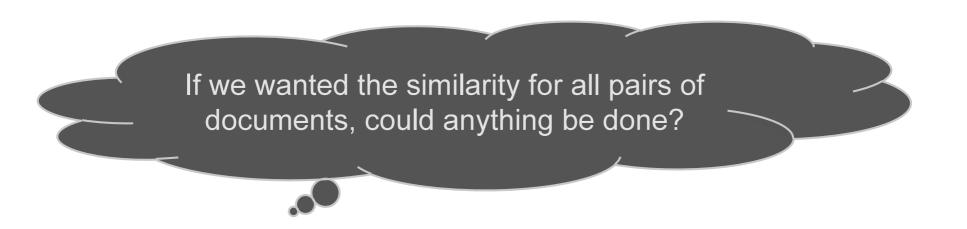
Document Similarity

Duplicate web pages (useful for ranking

Plagiarism

Cluster News Articles

Anything similar to documents: movie/music/art tastes, product characteristics


COVID-19 Report matching

Goal: find pairs of minhashes *likely* to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Goal: find pairs of minhashes *likely* to be similar (in order to then test more precisely for similarity).

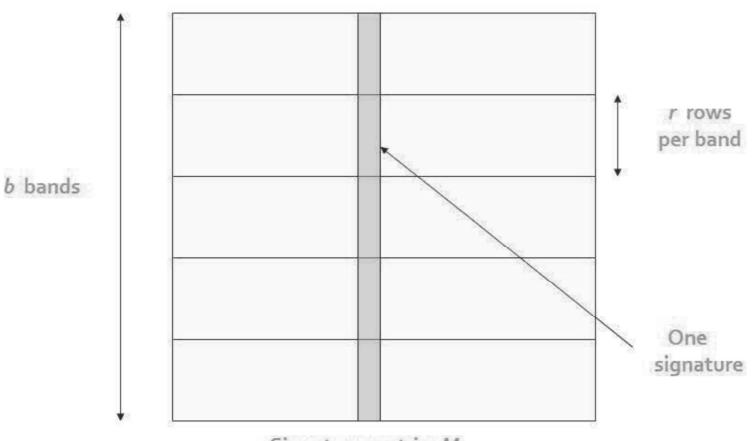
Candidate pairs: pairs of elements to be evaluated for similarity.

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

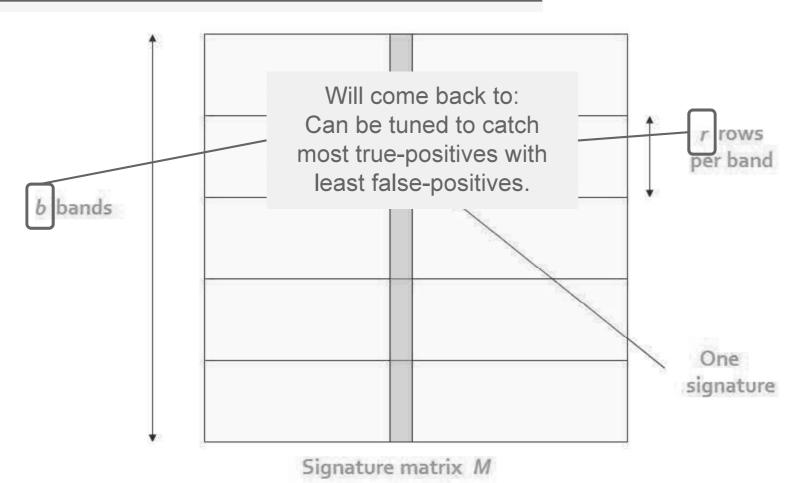
Approach: Hash multiple times over subsets of data: similar items are likely in the same bucket once.

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

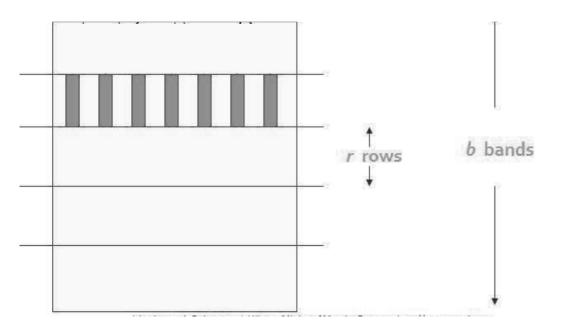

Candidate pairs: pairs of elements to be evaluated for similarity.

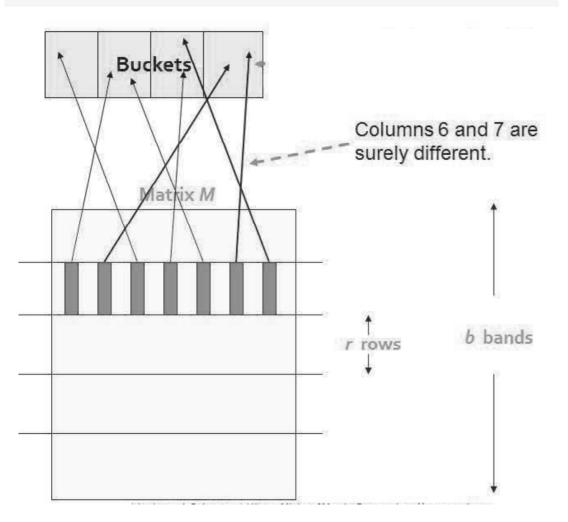
Approach: Hash multiple times over subsets of data: similar items are likely in the same bucket once.

Approach from MinHash: Hash columns of signature matrix


Candidate pairs end up in the same bucket.

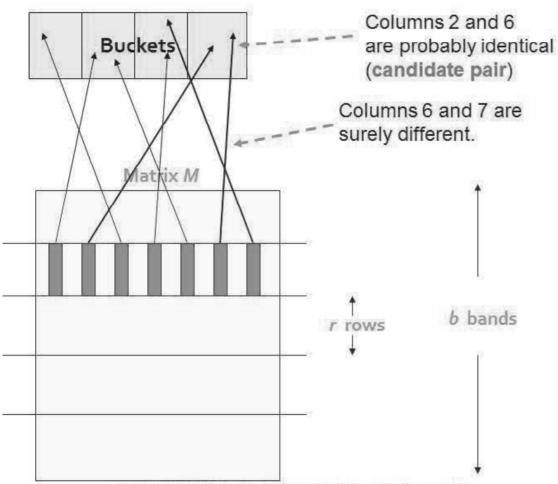
Step 1: Divide signature matrix into b bands

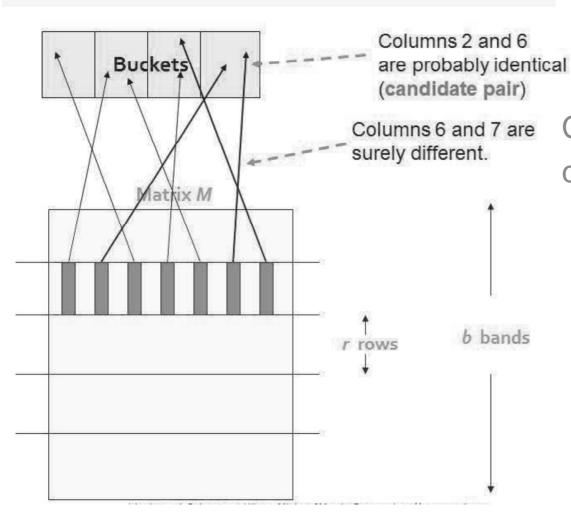

Signature matrix M


Step 1: Divide into b bands

Step 1: Divide into b bands

Step 2: Hash columns within bands (one hash per band)

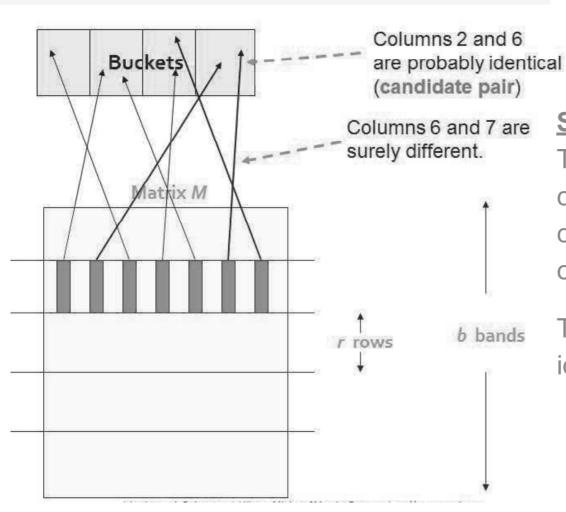




Step 1: Divide into b bands

Step 2: Hash columns within bands (one hash per band)

Step 1: Divide into *b* bands
Step 2: Hash columns
within bands
(one hash per band)



Step 1: Divide into b bands

Step 2: Hash columns within bands (one hash per band)

Criteria for being candidate pair:

 They end up in same bucket for at least 1 band.

Step 1: Divide into b bands


Step 2: Hash columns within bands (one hash per band)

Simplification:

There are enough buckets compared to rows per band that columns must be identical in order to hash into same bucket.

Thus, we only need to check if identical within a band.

Document-Similarity Pipeline

- 100,000 documents
- 100 random permutations/hash functions/rows
 - => if 4byte integers then 40Mb to hold signature matrix
 - => still 100k choose 2 is a lot (~5billion)

- 100,000 documents
- 100 random permutations/hash functions/rows
 - => if 4byte integers then 40Mb to hold signature matrix
 - => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity; for any row $p(S_1 == S_2) = .8$

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity; for any row p(S₁ == S₂) = .8

 $P(S_1 == S_2 \mid b^{(5)})$: probability S1 and S2 agree within a given band

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity; for any row p(S₁ == S₂) = .8

 $P(S_1 == S_2 \mid b^{(5)})$: probability S1 and S2 agree within a given band = $0.8^5 = .328$

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity; for any row p(S₁ == S₂) = .8

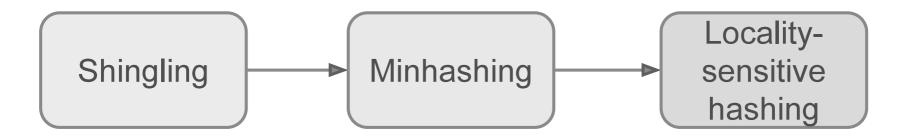
$$P(S_1 == S_2 \mid b^{(5)})$$
: probability S1 and S2 agree within a given band $= 0.8^5 = .328 => P(S_1!=S_2 \mid b) = 1-.328 = .672$

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity; for any row p(S₁ == S₂) = .8

 $P(S_1 == S_2 \mid b^{(5)})$: probability S1 and S2 agree within a given band $= 0.8^5 = .328 => P(S_1!=S_2 \mid b) = 1-.328 = .672$ $P(S_1!=S_2)$: probability S1 and S2 do not agree in any band

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity; for any row p(S₁ == S₂) = .8

$$P(S_1 == S_2 \mid b^{(5)})$$
: probability S1 and S2 agree within a given band $= 0.8^5 = .328 => P(S_1!=S_2 \mid b) = 1-.328 = .672$


$$P(S_1!=S_2)$$
: probability S1 and S2 do not agree in any band = $.672^{20} = .00035$

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity; for any row $p(S_1 == S_2) = .8$

$$P(S_1 == S_2 \mid b)$$
: probability S1 and S2 agree within a given band $= 0.8^5 = .328 => P(S_1!=S_2 \mid b) = 1-.328 = .672$ $P(S_1!=S_2)$: probability S1 and S2 do not agree in any band $= .672^{20} = .00035$

What if wanting 40% Jaccard Similarity?

Document-Similarity Pipeline

